MLOps落地開花,AI資產沉淀和治理成為實踐新風向。隨著業界對人工智能研發效率、團隊協作、安全保障等需求進一步提升,整個MLOps產業實踐呈現出“內涵很明確、落地很困難”的現狀。
從技術內涵來看, MLOps的核心和要求已明確,即圍繞“一個基礎、兩個關鍵、三個提升”,逐步建設從需求、開發、交付到模型運營的全生命周期運營管理機制。一個基礎是指持續交付,通過搭建工廠流水線式的模型生產方式,提G規模化生產效率。許多頭部企業都已開始實踐模式的持續交付,部分企業模型研發效率提升超過40%。兩個關鍵是指持續訓練和持續監控,通過持續訓練和持續監控搭建G效閉環的運營管理體系,提G機器學習可觀察性,保證模型質量,增加賦能效果。
三個提升是指數據管理、特征管理、模型管理能力的提升。對數據、特征和模型等AI資產加以沉淀、安全管控和風險治理,提升企業JAI治理能力,已成為MLOps新風向。
從落地現狀來看,持續交付、持續訓練、持續監控和模型治理難度依次提升,產業界當前尚處在提升持續交付和持續監控能力過程中,模型治理等僅有少量探索,未來仍然是AI工程化的重點方向。 v 此外,MLOps的工具市場持續火熱,端到端的MLOps一體化工具和細分場景的專項工具都非常火熱,端到端工具追求大而全的功能集,專項工具在局部或某些場景下功能和性能較好,例如流水線編排、模型監控、特征存儲、可觀測等工具,未來MLOps相關工具可能會成為AI軟件市場的重要賽道。
![]() |
商用機器人 Disinfection Robot 展廳機器人 智能垃圾站 輪式機器人底盤 迎賓機器人 移動機器人底盤 講解機器人 紫外線消毒機器人 大屏機器人 霧化消毒機器人 服務機器人底盤 智能送餐機器人 霧化消毒機 機器人OEM代工廠 消毒機器人排名 智能配送機器人 圖書館機器人 導引機器人 移動消毒機器人 導診機器人 迎賓接待機器人 前臺機器人 導覽機器人 酒店送物機器人 云跡科技潤機器人 云跡酒店機器人 智能導診機器人 |